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Abstract. We study the Potts model with a general number of states. First, we discuss the 
situation in which the Landau theory leads to a first order transition, but which does show 
fixed points of the renormalization group. Here, there are many questions which need 
further clarification. 

Then we describe, rather pedagogically, the logic behind the application of dimensional 
regularization to critical phenomena. We argue that this is a particularly natural approach. 
This technique is then applied to the Potts model, for which the critical exponents are 
computed to 0[(6 - ~i)~], when there is a fixed point. The one state results, which correspond 
to the percolation problem, are compared with other calculations and with numerical 
simulation. 

1. Introduction 

In the present paper we treat the Ashkin-Teller-Potts model (Ashkin and Teller 1943, 
Potts 1952) using t’Hooft and Veltman’s (1972) technique of dimensional regulariza- 
tion combined with minimal renormalization. We have two objectives. The first is to 
present a restatement of the technique in order to show that it is a natural way of 
applying field theory to critical phenomena. The main conceptual advantage is that one 
avoids discussing ultraviolet divergences in a theory which has a cut-off and in which we 
are seeking infrared behaviour. At the same time all the machinery erected for the 
treatment of the ultraviolet is preserved and is applicable. 

The second objective is to study the s state Potts model as a possible candidate for a 
continuous phase transition engendered by a trilinear coupling in the Lagrangian. This 
model has recently been attracting an increasing amount of attention, due to the fact 
that it can describe a very rich class of physical situations. In addition, its special 
symmetry gives rise to some interesting coupling constant flows, even in the absence of 
the trilinear term (Zia and Wallace 1975). 

The three state version of the model can describe the transition of a liquid crystal 
from its nematic to its isotropic phase (De Gennes 1969, Alexander 1974), or the 
transition of a cubic crystal into a tetragonal phase (Weger and Goldberg 1973). The 
two state version is of course the king model. The Potts model with a single state can 
describe the critical behaviour of bond percolation, while the limit of zero states is 
related to the electrical resistor network (Fortuin and Kasteleyn 1972, Baxter 1973, 
Harris et a1 1975). 

t On leave from the Racah Institute of Physics, Hebrew University, Jerusalem. 
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As is indicated by the original application of Ashkin and Teller, the same model with 
s states is a candidate for describing many systems in which one has s states locally, but 
the energy of any given configuration depends only on whether pairs of sites are in the 
same state or in different states. 

As was shown by Golner (1973) and Zia and Wallace (1975), such a system can be 
described by a continuous field theory with 

n = s - 1  (1.1) 
real fields. If the n fields are taken to be real, the statistical weight (or the Lagrangian) is 
symmetric under the discrete group which maps the n dimensional tetrahedron on 
itself. Such a Lagrangian includes, in general, trilinear terms. Consequently, in the 
Landau approximation of the theory one finds a first order transition (De Gennes 
1971). If this was also the behavicar of the full theory, then renormalization group 
analysis would be of little help, and one would not be able to appeal to universality. 

Thus, the first question which attracts attention is the order of the transition. Baxter 
(1973) has proved rigorously that in two dimensions the discrete Potts model has a 
continuous phase transition for s s 4, and a first order transition for s >4.  Straley 
(1974) has argued on the basis of series expansions that the three state model has a 
continuous transition in three dimensions also. But these results are in contradiction 
with Golner (1973), Amit and Scherbakov (1974), and Enting and Domb (1975) who 
find that in three dimensions the transition is a first order one. 

On the experimental side, for first order transitions, both the nematic to isotropic 
transition in liquid crystals and the martensitic transition in p tungsten (Weger and 
Goldberg 1973) have much smaller discontinuities than those expected from a mean 
field calculation. The sizes of the susceptibilities, in the generalized sense, near those 
two transitions are far from negligible. 

Work on the percolation problem has also indicated a continuous transition 
(Kirkpatrick 1975). So once the impact of Fortuin and Kasteleyn’s argument, showing 
that percolation can be described by a limiting case of the Potts model which has a 
Hamiltonian, was realized by Harris et a1 (1975), they applied the renormalization 
group, among other techniques, to the study of percolation. The fact that the continuous 
field theory includes a trilinear term implies directly that the critical number of 
dimensions separating Gaussian from non-Gaussian behaviour is d ,  = 6 t  (see also 0 3 
below). The natural expansion parameter is then 

~ z 6 - d .  (1.2) 
Harris er a1 (1975) studied the recursion relations of Wilson and Fisher (1972) to first 
order in E .  A fixed point was found, at this order, for the percolation problem. The 
critical exponents were calculated to this order giving rather unimpressive agreement 
with the simulation studies of Kirkpatrick (1975). 

If the renormalization group equations are studied for a general number of states, 
one finds that the value of the trilinear coupling constant, at the fixed point, tends to 
infinity as s -+ 10/3 from belowS. For s > 10/3 a fixed point implies an imaginary 

* Toulouse (1974) has suggested that the critical dimensionality for the percolation problem is 6, before the 
equivalence to the continuous field theory was appreciated. The logic of Toulouse’s conjecture was recently 
put in question, by A Gmiglio (private communication), by pointing out that it is not clear that on a Bethe 
lattice 1) = 0 and Y = 1/2. 
$ This behaviour was first communicated to me by Dr E BrCzin, and served as a stimulus for the calculation 
to O(E2). 
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coupling constant. This clearly limits the validity of the calculation as one approaches 
the critical value of s. Above s = 10/3 the result is interpreted as the absence of a fixed 
point and thus no continuous transition. 

As the Landau theory predicts a first order transition, the discovery of a fixed point 
created unease. It is commonly thought that the renormalization group can, at most, 
decorate a continuous transition which already exists in the tree approximation. 
Harris et a1 (1975) have tried to deal with this issue by imposing a constraint on the 
order parameter in the Landau theory. It was decided that in the ordered phase the 
order parameter must lie in the positive direction along the hyper-tetrahedral lines- 
from the centre to the vertices-if the trilinear coupling constant g30 is negative. 
Normally, such a constraint will be rather harmless since-these directions are just those 
along which the minimum in the free energy-at which the symmetry is discontinuously 
broken-will lie. But in the Potts model the trilinear term can change its sign because of 
its tensorial structure. This happens at s = 2. Then the constraint imposed for g30 < 0 
eliminates the first order transition and one has to lower the temperature until a second 
order transition appears, in the positive direction, at the mean field transition tempera- 
ture of the g30 = 0 model. This apparently solves two difficulties at once: that of passing 
from a first order transition to a second order one, and that of the peculiar behaviour 
near s = 10/3. 

We find this argument rather unconvincing. It is one thing to impose a constraint on 
the way one interprets the results of the Landau theory, but it is quite another thing to 
say that the field theory based on a Lagrangian which knows nothing of the constraint, 
will describe the small modifications around the selected minimum. In other words, one 
can consider a situation in which there is an acceptable minimum in the free energy 
away from the origin. One can then proceed to carry renormalization group transforma- 
tions in the symmetric state and a fixed point may be found: this would be the case for 
the Potts model when 2 < s  < 10/3. Here there are good reasons to doubt the results, 
since they would indicate that the renormalization group is insensitive to minima which 
are a finite distance away. The only difference in the case s < 2 is that an argument exists 
for rejecting the first minimum which appears. But this interpretation of the results of 
the theory does not improve its reliability in producing a scale invariant symmetric 
theory in the presence of a deeper, non-symmetric minimum. We do not suggest an 
answer to this question, which we feel should receive more attention. 

The extension of the calculation to second order in e was intended to throw some 
light on the approach to the critical value of s, and to try and reach a better quantitative 
agreement with the simulation studies. As this work was being completed, we received 
the work of Priest and Lubensky (1976) who have studied the Wilson-Fisher recursion 
relations to order e2. Nevertheless we feel that the present calculation is of interest. 
The rather complicated calculation is carried out here by a different method, which 
seems to us simpler, and includes many internal checks at intermediate stages (see for 
example 0 4 and appendix 2). The method is one of renormalization by minimally 
subtracting singularities of a dimensionally regularized theory (t’Hooft and Veltman 
1972, t’Hooft 1973, Gross 1975, Lawrie 1975). We use this opportunity to argue that 
this is a very natural approach to the application of field theory to critical phenomena. 

The results we find are in qualitative agreement with Priest and Lubensky as far as 
the approach to s = 10/3 is concerned but the exponent y is significantly different from 
their result. This difference is big enough to make our results agree with those of 
Kirkpatrick, to within his errors, down to d = 4. The situation with regards to p is much 
worse. The e2 term is very small. The discrepancy between the first order result and the 
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simulation is not improved. We discuss the differences from Priest and Lubensky and 
the remaining discrepancies in p in 0 9. See also the epilogue in § 10. 

2. Formulation of the problem 

We consider the Potts model with n + 1 states in the representation proposed by Zia and 
Wallace (1975). The Landau-Ginsburg free energy density is written as 

where 4 is a real field with n components, whose Fourier decomposition includes 
wavenumbers bounded by a cut-off A. The tensor 

is the trilinear hyper-tetrahedral invariant constructed from the n + 1 vectors ea, which 
have the property 

e: e! = in + 1)s"' - 1. (2.3) 

Since we are interested in the limit n + O  we have changed the normalization of the 
vectors by afactor of y/n relative to that of Zia and Wallace. It follows from (2.3) that 

n + l  

a = l  
1 e i=O 

and 
efeg = (n + l)sip 

Summation over repeated indices is implied. One can write an explicit representation 
for the tensor T (Zia and Wallace 1975), but we will not need it here. 

Averages, correlation functions, vertex functions etc, are defined using 

exp -1 dx9[4 (x ) l  

as the relative statistical weight of the distribution + ( x ) ,  in the conventional way. 
The question is whether the field theory, as specified by (2.1), can be scale invariant; 

namely, whether the theory can have a non-trivial fixed point. Since the existence of a 
fixed point ensures the homogeneous behaviour of the various thermodynamic quan- 
tities, scaling holds, and other exponents can be obtained. For a review of this ideology, 
see BrCzin et a1 (1975). 

3. General considerations 

3.1. Infrared singularities and dimensional regularization 

As usual, critical behaviour at a phase transition is generated by infrared singularities in 
Feynman integrals, which are cut off at high momentum. In the absence of infrared 
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singularities the theory would be Gaussian, at least to leading order in the low 
momentum region. Clearly, the region around the surface of the integration domain 
contributes nothing to the singular dependence on the low external momenta. Thus, in 
any integral which is ultraviolet divergent we can perform an integration by parts, using 
‘partialp’ (t’Hooft and Veltman 1972) obtaining a surface term, and an integral which is 
less ultraviolet divergent by at least one power (see appendix 1). This procedure can be 
repeated until the integral is convergent at high momentum. The limits of integration 
can then be extended to infinity. The difference between the convergent cut-off integral 
and the integral with infinite limits as well as the surface terms-originating from the 
integrations by parts-are all analytic functions of the external momenta. The same is 
true if one considers the graphs at zero external momenta but with a finite small mass 
(inverse correlation length). 

The analytic terms, which depend on the cut-off can be disregarded as far as the 
asymptotic critical behaviour is concerned, and the remaining integral can be per- 
formed. But now one realizes, following t’Hooft and Veltman (1972), that the result is 
in general identical to that obtained by computing the original integral in its dimension- 
ally regularized form. (See example in appendix 1.) 

This procedure is quite general and its usefulness is even more striking when one 
considers the graphs of the two point function, which are ultraviolet divergent even for 
d < 6  (see for example t’Hooft and Veltman 1972, § 4). In that case the integration by 
parts-‘partial p’-makes a p 2  dependence explicit and leaves in the integrals only the 
singular dependence on p .  This also takes place in the dimensional regularization. 

The procedure for calculating any graph is to consider the number of dimensions as a 
complex variable, to assemble groups of denominators by Feynman parameters, and 
then, paying no attention to questions of ultraviolet convergence, use formulae (A.3) 
and (A.7) to obtain the integral as a function of the external momenta and the 
dimensionality. Experience helps in finding the most efficient order in which to group 
the denominators. 

3.2. The relevant operator 

Within the framework of perturbation theory the most relevant operator in 2 is 
identified as the one producing the strongest infrared divergencies. Equivalent identifi- 
cation can, of course, be made within the recursion relation scheme (Wilson and Kogut 
1974). Here we note that a general graph of a vertex function with E external legs, n3 
trilinear interactions and n4 quadrilinear interactions has L loops, or free integrations, 
given by 

L =$I3 -k n4 -$E + 1.  (3.1) 
Once the dimensional regularization has been introduced, the momentum depen- 

dence of a graph can be simply deduced by dimensional analysis, since the integrals 
become homogeneous functions of the external momenta (Symanzik 1973). If the scale 
of the external momenta is P, the regularized graph G will behave as: 

(3.2) 
G _ p - 2 E + 6 + 2 n 4 + L ( d - 6 )  

where n3 was eliminated using equation (3.1). Thus any increase in the number of four- 
interactions, at a fixed number of loops and external legs, weakens the singularity at low 
P by two complete powers. The conclusion is that if a zero mass rheory exists only the 
trilinear interaction is relevant. 
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3.3. The critical number of dimensions 

The critical number of dimensions is the one at which the fluctuations (infrared 
divergences) become unimportant. It can be determined from the condition that the 
dependence of the various vertex functions on the momentum scale be equal to their 
canonical engineering dimension, since the latter is the scale dependence of the 
Gaussian (free) theory. 

The canonical dimension of an E point vertex function, in units of momentum, is 
E + d -;Ed. In a theory with trilinear interactions only, the dependence of this function 
on the momentum scale is given by (3.2) to be 6 - 2E + L(d  - 6) .  

The difference between the two is 

( $ E + L - l ) ( d - 6 ) = ; n 3 ( d - 6 ) .  (3 .3)  

d ,  = 6 ,  (3 .4)  

as was originally conjectured by Toulouse (1974). 
This is of course also the number of dimensions at which the theory is renormaliza- 

ble, since the ultraviolet divergences become independent of the order in perturbation 
theory. 

Thus for d = 6, the two become equal, and 

3.4. Poles, renormalization, and relevant vertex functions 

As one approaches the critical number of dimensions, d = 6 ,  graphs develop poles, such 
as fhe one appearing in U 3  - (d /2 ) ] ,  equation (A.4) in appendix 1 .  Usually, these poles 
are ascribed to logarithmic ultraviolet divergences. However in the present interpreta- 
tion we never have to refer to ultraviolet divergences, since we are considering a cut-off 
theory. 

Instead, we notice that since the dimensionally regularized graphs are identical to 
the expressions obtained by performing partial integrations, such poles will occur 
whenever the numbers of powers of momentum in the numerator and in the 
denominator of the integrand are equal; we will call these logarithmic integrands. This 
condition is equivalent to that of logarithmic ultraviolet divergence, of course. Only the 
interpretation, which stays within the cut-off theory, is different. 

The origin of these poles can be traced in a simple example. Consider the integral 
1 

Im(a) = dx/(x +a)* (3.5) 
0 

with a > 0. This integral is clearly finite for any a. If I, ( a )  is now calculated by ‘partial 
p ’ ,  that is, by inserting dxldx = 1 in (3.5) we find: 

a dx. (3.6) 

If the surface term, the first term in equation (3.6),  were to be discarded, a pole 
would appear as a -+ 1 .  This is a manifestation of the fact that when one has the same 
power in the numerator and in the denominator, the integral cannot be calculated by 
partial integration, except as a limit when a + 1 .  The integral stays finite, and it is the 
role of the surface term to cancel the singularity in the second term. 
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When surface terms are omitted, as was suggested in § 3.1 above, or in appendix 1, 
the singularities which appear as poles in a = 6 - d have to be cancelled by some other 
means. But, as the simple example shown above indicates, nothing magical occurs; no 
dtraviolet divergences appear where there were none. 

On subtracting the singularity one does not want to reconstitute the entire surface 
term, which was dropped. Instead one can, for example, consider the second term in 
(3.6) as the regularized value of Z(a) and subtract it from the value of the same integral 
at some fixed value a’, of a. Alternatively, one can simply set A +  a3 in (3.6) and subtract 
the singularity in (1 -a) .  That this subtraction is independent of a, in general, is the 
content of the theorem of t’Hooft and Veltman (1972). In both cases the logarithmic 
infrared singularity of Za(a), as a function of a, for a = 1, is preserved. That is 

Zl(a) -In a. 

In both cases the subtraction is independent of a (see the discussion in § 4). 
There are two ways of carrying out renormalization. The first is the one which fixes 

the values of some vertex functions at some given momentum, the second is minimal 
renormalization to which we return in 0 4 below. 

The determination of the vertex functions, which have to be treated by renormaliza- 
tion, is technically the same as in a discussion of ultraviolet divergences. We have to 
determine which vertex functions have primitive ‘logarithmic’ integrands. From the 
discussion in § 3.3, above, we know the primitive difference between the number of 
powers in the numerator and denominator at (Y = 6, for a function with E external legs, 
is 

6 = 6-2E. 

For E = 2 and 3 this difference is positive. But, for a dimensionally regularized 
theory with zero mass, E = 2 has logarithmic integrands as well. Thus we have to 
renormalize r(2) and I‘(3). In order to calculate the exponent v, vertex functions with the 
composite operator 4’ have also to be studied. From these, only r(2,1)-corresponding 
to (r#q5c$2)-has primitive logarithmic integrands. 

The central theorem on renormalization, which we adopt, states that it is sufficient to 
subtract the poles of the functions with primitive logarithmic integrals, in order to make 
all vertex functions finite. 

4. The renormalization procedure 

The theory defined in § 2 with g40 = 0, is considered at zero mass, i.e. at its critical point. 
The reason for considering a zero mass theory was discussed in § 1. The temperature 
dependence is incorporated by expanding every correlation function in a power series in 

(4.1) 
2 2 2  Amo = mo = moc 

where m& is the critical temperature relative to the mean field transition temperature 
for g30 = 0. This procedure-an expansion in a ‘soft operator’-has been introduced by 
Weinberg (1973) and was discussed in the context of phase transitions by several 
authors (see references 36,37 and 38 in Brezin eta1 1974). It simplifies the computa- 
tions considerably. 

The renormalization is carried out following t’Hooft (1973). Since the mass is zero 
and since at zero mass the mass subtraction terms vanish when dimensionally reg- 
ularized, we need to introduce three dimensionless functions uo(u, E), &(U, E ) ,  
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Z,z(u, E )  where 

g30 = p e / 2 ~ o  go. 

p is an arbitrary momentum scale, and 

~ ~ 6 - d .  

(4.2) 

(4.3) 

The functions Z,, Z,z and uo are determined by requiring that 

2, rlf’(p, - P ; go) = r‘2’(P, - P ; U, €7 P )  

Z+ r B  (pi, pz, ~ 3 ;  go) = P3)(p1, p z ,  p 3 ;  U, E ,  P )  

z,zrlf,l)(Plr p 2 ;  p 3 ;  go) = r(2.*)(~l ,  p 2 ;  p 3 ;  U ,  E ,  CL) 

(4.4) 

(4.5) 

(4.6) 

3 / 2  ( 3 )  

be finite as E + 0 order by order in U. The TB are dimensionally regularized. This 
ensures that all other vertices of many 4 and many 4’ are finite, provided that one 
multiplies the bare functions by 2;’’ for every 4 and by Z,zZ,’ for every 4’, and 
substitutes psuo(u, E )  for g30. 

The functions r(E) and satisfy renormalization group equations which express 
the fact that TB are independent of p, when go is kept fixed. The typical equation would 
be 

where 

and analogously 

y,z(u, E )  =p(u, €)(a In Z,Z/au). (4.10) 

The critical exponents are obtained by first finding the zeros of p, U*(€), which are the 
fixed points, and substituting them in y, and y+*. Then, as explained in detail by BrCzin 
et a1 (1974) one finds 

(4.11) 

(4.12) 

The problem then reduces to the determination of Z,, 2,z and uo. Usually, this is 
done by imposing normalization conditions (BrCzin et a1 1974, Di Castro 1972, 
Jegerlehmer and Schroer 1973), which prescribe definite values to the functions on the 
right-hand side of equations (4.4)-(4.6) at some arbitrarily chosen values of the external 
momenta. The disadvantage is that in the process of calculating the power series for the 
three functions one has to calculate complicated integrals which depend on the 
normalization point in momentum space. It turns out (t’Hooft and Veltman 1972, 
t’Hooft 1973) that they all cancel in the final expressions for Z,, 2 , ~  and uo. 

Furthermore, the functions p, y, and y,~, for a given theory, do not have a unique 
power expansion in U and E .  If the renormalization is chosen wisely (t’Hooft 1973), they 
reach a very simple form which implies further cancellations. Both types of cancellation 
mentioned above provide powerful checks on the combinatorial and tensorial coeffi- 
cients in the graphs at intermediate stages of the computation. 
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As was pointed out by t’Hooft (1973), if the theory is renormalizable then it is 
sufficient to demand that in the functions on the right-hand side of (4.4)-(4.6) only 
singular terms in E be cancelled at every order in U. This suffices to determine Z,, Z,2 
and uo uniquely. 

The lowest order terms in pi’, r‘,” and rg31) are not singular as E + 0. Hence one 
writes 

2, = SiUi (4.13) 
m 

I =O 

00 

z,,= 1 riai 
i = O  

m 

uo=u tiU’ 
i = O  

(4.14) 

(4.15) 

and then so = ro = to = 1. The one loop corrections are proportional to C1 multiplied by 
a term which is independent of the momentum, and then by a term which is finite when 
E + 0 but proportional to In k2.  The procedure is carried out without making any explicit 
reference to the value of the external momenta. The first corrections to (4.13) will be 
proportional to E - ~ ,  and give no reason to suspect that they may depend on the external 
momenta. 

term in 2, will multiply 
In k 2  in the one loop correction to the bare functions, and thus a momentum dependent 
term, singular in E is generated. t’Hooft and Veltman prove that this type of term will 
inevitably be cancelled by the two loop contribution, if the theory is renormalizable in 
the traditional way. No momentum dependence will enter Z,, 2,. and uo. 

From the construction of the three renormalization functions it is clear that, apart 
from the lowest order term, all terms will be singular as E -* 0. On the other hand, since 
the functions p, y, and y,* can be expressed in terms of renormalized vertices they are 
all finite in this limit (Callan 1970, Symanzik 1970). Inserting (4.15) in expression (4.8) 
for p, one concludes that the singularities in (a In uO/au)-’ can only be simple poles, so 
that they can be compensated by the explicit E in (4.8). Thus higher order poles in E, 

which do appear in u0, have to cancel. Moreover, with the exception of the lowest order 
term in uo, there are no terms which are regular in E. Thus p will have the form 

(4.16) 

Similar arguments applied to yb and y,z imply that these two functions have no 
explicit E dependence at all (Gross 1975) which implies many more cancellations of the 
pole terms in 2, and 2,~. The final E dependence of the critical exponents is due to the 
fact that one inserts the values of U at the fixed point in the power series. 

In fact the above considerations imply that one could equally well calculate p, y, 
and y,2 (Gross 1975) for E = 0 directly and then simply add the term (- 4 2 )  to p. We 
prefer the longer way since it provides checks. 

But, when the new values of Z,, etc, are introduced, the 

p(u,  E )  = --&U + b ( u ) .  

5. Renormalization of the Pot& model 

In the model described in 0 2, with g40 = 0, there are n components, and so, in principle, 
the vertices which have to be renormalized are tensors in the component indices. 
However, the only tensors with two and three indices, which are invariant under the 
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hyper-tetrahedral symmetry, are 6,  and Qijk. respectively. The two point function is 
proportional to 6. .  and the three point function to Qijk. Also since the 4’ insertion which 
makes T‘” into $71)  is really 

r(2,1) is also proportional to Thus the functions Z,, 2,. and u0 are scalars in the 
component space. 

In order to calculate the critical exponents to second order in E we have to calculate 
the renormalization functions to second order in U’, beyond the lowest order term. The 
coefficients s2, r2 and t2 have to be calculated to O(E’); they start with O(E-’). The 
coefficients s4, 14, t4 have to be calculated to O(E-’); they start at O(E-’). The odd 
coefficients vanish. 

If we writet 

where the tensors have been removed, then by the procedure of minimal renormaliza- 
tion, as described in the previous section, we find: 

( 5 . 5 )  

(5.6) 

(5.7) 

(5.9) 

(5.10) 

The notation [A], means ‘the singular part of A, as a function of E’. These equations 
follow simply from the requirement that in equations (4.4)-(4.6) the singularities in E 

cancel, order by order in U. 
In terms of the si, ri and ti one can write p, y+ and y42 using (4.8)-(4.10). The result 

is : 

(5.11) 1 2 P ( u )  = - ~ E u [  1 - 2 t 2 ~  - (4t4 - 6t:)u4] 

(5.12) 

(5.13) 

The cancellations we have discussed in the previous section imply that momentum 
dependent terms have to cancel identically, in s4, 14 and t4 independently. Then, the 
terms proportional to E-* in the internal parentheses in P, y+ and y.+z have to cancel as 
well. 

?The coupling constants uo and U and r‘’) have been redefined to include the angular factors: 
U2[2d-1?rd r ( f d ) ]  -, 2 .  
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Given (5.11), (5.12) and (5.13) we can calculate U ,  q, and U-' in terms of the s, rand 
t. The result is: 

(5.14) 

(5.15) 

(5.16) -1 2t2(2r4 - ri  - 2r2t2) - r2(4t4 - 6t:) 
y - 2 + q = - 2 E -  E.  

2t2 (2 td3  
Recall that each of the factors appearing in the above expression is proportional to e-'. 

6. The critical exponents for general n 

Despite the fact that most of the detailed calculations are relegated to the appendix, we 
discuss the coefficients of the graphs which follow from the tensorial structure of the 
interaction here, since these coefficients serve in the definition of the results. 

There are three functions of n, the number of components, from which all the 
coefficients can be constructed. They are related to the graphs shown in figure 1. 

la1 lbl i cl 

Fispre 1. Graphs defining the three independent tensorial coefficients. 

The contributions of the graphs are: 

where Al,  B1 and B4 are the integrals corresponding to the graphs. They are discussed 
in the appendix. Equations (6.1)-(6.3) define al, p 1  and p4. 

Figure l ( a )  represents a l  in equation (5.2). There are two terms in a2 given by 
figures 2(b)  and 2(c)  respectively. 

aZ1 = &:A2 (6.4) 

a22 = b f f I P l A 3 .  (6.5) 
a2 = a21 + a22 
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( 0 )  i b )  IC l 

Figure 2. Graphs of r(*). 

Figure l(b) gives bl in equation (5.3). There are three terms in b2, represented by 
figures 3(b), 3(c) and 3 ( d ) .  The corresponding expressions are: 

b21= 3P:& (6.6) 

1222 =;UlPlB3 (6.7) 

(6.8) b -1 

b2= b21+b22+b23 

23 - 2P4B4. 

The terms of are given in terms of tensorial factors of I‘(’) and integrals of I‘(3). 
Thus, if the + 2  insertion is denoted by 0, then the graphs entering P2,l) can be drawn as 
shown in Figure 4. 

(6.9) 
(6.10) 

(6.11) 

(6.12) 

(6.13) 
(6.14) 

Flgore 4. Graphs of pzP1) 

In terms of the a and B the results for the expansion coefficients of the renormaliza- 
tion constants can be written as 

(6.15) 

(6.16) 
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(6.17) 

(6.18) 
18 

(6.19) 
1 CY2 1 1 ’ 1  

1 3 a1 1 11 2 11 3 1  

r4 = 7 E ($ + ff 1p 1) +; (48 ff 1 -2 ff 1p 1) 

t4 = 7 2 (7- p 1) -7 (288 ff 1 - 48 ff 1p 1 + i p  ; +4p4). (6.20) 

Inserting (6.15) through (6.20) in (5.14) through (5.16) leads to: 

%ff f-gfflpl +&; +@4 E (6.21) (iff I - 2P1)’ 
E U*’ = 

( i V 2 P 1 )  

6hff1- 2Pl) 
(6.22) ff 1E 

7 7 =  1 

Y - 1  -2+77= 1 f f l E  
19 2 

( 1 +  mff 1 +iff 1p1-&; + p4 (6.23) (iff 1 - 2Pd2 (9 1 - 2P1) 

7. Discussion of the results for general n 

All three quantities in equations (6.12)-(6.23) have in their denominators the combina- 
tion 

1 w =3Y1--2p1. 

w = $(n + 1)*(7 -3n). 

Using (6.1) and (6.2) we find that 

(7.1) 

This indicates that as n + 7/3 (number of states + 10/3) from below the fixed point 

But as n approaches 7/3, (U*)’ increases, and therefore the calculation becomes 
disappears since (U*)’ cannot be negative. There is no fixed point for n > 7/3. 

meaningless well before it reaches this value. We must have 

7 - 3n > O ( E ~ ) ,  

with CT < 1, for the results to make sense. 

(5.1 l) ,  which has the form: 
To determine how close n can approach its critical value we return to equation 

P ( U ) =  -&~[l-;(n +1)2(7-3n)u2+A~4] (7.2) 

with A(n) > 0 when n = 7/3. In order for equation (7.2) to have a solution, (U)’ > 0, we 
must have: 

i(n + 1)2(7-3n)>Au2. (7.3) 
Substituting U’ in first order in E gives the condition: 

7-3n >A’E~’’. (7.4) 
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This is a rather troubling feature. For any physical system E 3 3. Hence, if the fixed 
point is to be interpreted as a continuous transition, one is restricted to very small values 
of n. In fact, below n = 2 the only case of interest is n = 0, the percolation problem to 
which we now turn. 

8. The percolation problem 

If we assume that n = 0 is beyond the difficulties caused by the appearance of a critical 
number of components, which depends on the number of space dimensions, then we can 
calculate the exponents for the percolation problem. 

To second order in E, the exponents which are calculated directly are: 

1 206 
3 .7 

7)= - - , € - - 3 E ,  

The rest are obtained by using scaling relations. We find 

1 565 
7 2 .3 .7 

y = (2-77)v = l + - E + = E  (8.3) 

These results agree to first order with Priest and Lubensky (1975). The second order 
terms are somewhat different. Consequently our y, calculated to order E * ,  agrees with 
the numerical values of Kirkpatrick, to within the errors reported there, at four and five 
dimensions. The second order terms in /3 are very small and the results are very 
unsatisfactory. Our results together with those of Kirkpatrick (1975) are shown in 
figure 5. 

We conjecture that the contrast between the agreement of y and p with the 
numerical results, originates from the fundamental structure of the model. It is possible 
that even if a first order transition has removed the foundation from the zero-mass 
computation, the relation between y, 77 and Y in the metastable symmetric state will 
hold. On the other hand, in such a situation the relation between these exponents and 
the one describing the order parameter p, is doubly suspect. 

9. Comparison with Priest and Lubensky 

The representation chosen by Priest and Lubensky is somewhat different from ours. A 
translation can be made by replacing our interaction u2 by t2: 

1 3  
u 2  = 288(-) t2 = Rt2. 

n + l  

Then one has to replace our a1 by al using 

C Y ]  = 2R-'al. 

(9.1) 

(9.2) 
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t 

1.6 

'C t 
Figure 5. y and p against E = 6 - d, for the n = 0 case. Curve A, linear in E ; curve B, order 
E'; curve C, Monte Carlo. 

The coefficient p1 has to be replaced by a2 using: 

p1 = R-'a2 (9.3) 

and finally, p4 is to be replaced by a3:  

p4 = RP2a3 (9.4) 

where al ,  a2 and a3 is the notation employed by Priest and Lubensky. 

ai. We find: 
Using (9.2)-(9.4) we can rewrite the expressions for 7 and Y-' - 2 + 71 in terms of the 

a l -u2+-a lu2-4a3  
3 

-1 2a1 a1 _- 1 9 2  2 4  
E +  v - 2 + 7 = - -  

2a2-a l  ( ~ U ~ - U ~ ) ~ (  18 (9.6) 

10. Epilogue 

The differences between our original calculation and that of Priest and Lubensky were 
discussed at length with Dr Lubensky. The initial result of the discussion was that I had 
to concede that the graphs (c) in figure 1 and ( d )  in figure 4, had a symmetry factor of 3, 
rather than 1. This was a rather painful realization, since a superficial look at these two 
graphs reveals no symmetry, and then the combinations can be filled in to justify the 
original assertion. However, once the graph is viewed as a three dimensional figure, the 
plane of the three external legs appears as a plane of symmetry of reflection. 

When recalculated with the corrected weights, as they appear in equations (6.8) and 
(6.13), our numerical values changed very little but serious differences persisted, such as 
the factors of 2 in front of a3 in both 7 and Y-' - 2 + 7. Compare equations (9.5) and 
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(9.6) with Priest and Lubensky's equations (5.15) and (5.16). Each of us has redone the 
calculation using the other's method, and apart from trivial misprints, the respective 
results were reproduced. 

Further checks, correspondence and discussions have revealed another error in our 
calculation, again in the one term which is not checked intrinsically at  this order. This is 
the 1 in equation (A.14). An error was also found in equation (5 .5 )  of Priest and 
Lubensky. When all these errors are corrected, the results of our respective calcula- 
tions agree. Still y fits numerical simulation results much better than p. 
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Appendix 1. Example of the dimensional regularization in problems of critical 
phenomena 

To illustrate the argument of 0 3.1 we consider the graph in figure6. 

A, 
k2 q * k 2  - k , - k 2  

Figure 6 .  The one-loop graph in p3) 

Denoting the graph by I ( k l ,  k2 ) ,  we have 

1 
k 2 )  = I dqq2(q - k1)2(q +k2)2'  

Introducing Feynman parameters x and y we have 

Remembering that a factor 

s d  = 2d- ' rdr(d/2)  

was absorbed in U ' ,  the dimensionally regularized result for (A.2) is obtained by using 
equation (A.5) of t'Hooft and Veltman (1972). Namely, in our notation 
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and 

i ( k l ,  k2) = t r (bd)r (3  - i d )  dx dy[x(l - x ) k :  + y (1 - y)k: + 2 ~ y k ~ k ~ ] ~ ~ - ~ .  (A.4) 

On the other hand, if we want an integral which is ultraviolet convergent beyond six 
dimensions, so that the cut-off dependence can be disregarded, we should perform an 
integration by parts. This we do using t’Hooft and Veltman’s ‘partial p ’ .  Namely. 

is inserted in (A.1). The result is 

where S,,(kl, k2 )  is the integral of qi/[q2(q - k#(q + kz)’] over the surface on which 

The last term in (A.6), being calculated on the surface, is a harmless function of k l  
and kZ, except for d = 6, But this singularity is dealt with by the renormalization, as is 
discussed in the text. 

The two integrals in (A.6) are ultraviolet convergent, and we can let A+w. The 
difference is once again harmless except for the pole at d = o. These two integrals can 
be computed legitimately, since they are convergent, using (A.3) and 

191 = A *  

(t’Hooft and Veltman, equation (A.6)). The result is (A.4). 

Appendix 2. Cancellation of momentum dependent parts in minimal renormalition 

In order to indicate how cancellations occur in the programme of minimal renormaliza- 
tion, we will use a short cut, which saves a certain amount of writing, in a calculation 
carried to the necessary order. The technique used by t’Hooft and Veltman (1972) is 
much more systematic, and makes the generalization to any number of loops automatic. 

We need three terms for the calculation of p2)(p). They are 

A z = 4 ( 1 + - E - c l n p  25 

P 2  3E 
A3 = -7( 3E 1 +-- 2 E In p 2 ) .  

18e 12 

(A.lO) 



1458 D J Amit 

As was discussed in the text, A l  is calculated to 0 ( 1 ) ,  while A2 and A3 to O(E-’). 
For 1‘(3)~1 ,  p2, p 3 )  we need 

1 
B2 = 2 (1  - ; E  - 2 4  

1 1  
B 3 -  - -- ( 12€-2€L) 

6 ~ ’  

(A. 11) 

(A. 12) 

(A.13) 

(A. 14) 1 
B4=-  

265’ 

where 

.=lo dxIo dy ~(1-x-y)lnr~(l-x)p:+y(l-y)p22+2xyplpzl .  (A.15) 

Using (6.1) and (6.2), in conjunction with equations (A.8) and (A. l l )  in (5.5) and 
(5.7), one immediately obtains (6.15) and (6.17). No cancellations take place at this 
level, since there are no momentum dependent terms which are singular as E -* 0. 

If we proceed to calculate s4, using (5.8), we find that all the terms will contain 
In p 2 .  These singular momentum dependent contributions enter proportional 

sometimes to a:, sometimes to a l p I .  Using (6.4), (6.5), (6.15) and (6.17) together with 
equations (A.9) and (A. lo), one finds that these two contributions vanish indepen- 
dently, and the result for s4 is given by (6.18). 

In calculating t4 and r4, one comes across terms of the form E - ~ L ,  which are singular 
momentum dependent terms. These again cancel identically. Terms proportional to a :, 
alp1 and to p: cancel independently. It is then a matter of straightforward arithmetic to 
arrive at (6.20). Similarly for r4, equation (6.19). 

1 1 
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